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Background

Integer 3-SUM

The Integer 3-SUM Problem

Given three sets A1,A2,A3 of integers,
Are there a1 ∈ A1, a2 ∈ A2, a3 ∈ A3 such that a1 + a2 = a3?

History

Introduced as an underlying problem for many computational
geometry problems [Gajentaan and Overmars, 1995]

No significance progress in 20 years

Subquadratic O(n2/(log n/ log log n)2/3) algorithm
[Grønlund and Pettie, 2014]
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Background

The k-SUM Conjecture

The k-SUM Problem

Given subsets A1, · · · ,Ak of an abelian group G ,
Are there a1 ∈ A1, · · · , ak ∈ Ak such that

∑k
i=1 ai = 0?

The k-SUM Conjecture

k-SUM in Z requires randomized time Ω(ndk/2e−o(1)).

Note: There is a simple Õ(ndk/2e) time meet-in-the-middle algorithm.
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Background

k-SUM Variants

Central Question

What can the standard k-SUM conjecture say about the variants?

Motivation

Variants of k-SUM are related to other problems.

Multidimensional k-SUM:
Coding theory [Downey et al., 1999]
Reduction from listing triangles [Jafargholi and Viola, 2016]

Monotone k-SUM:
Bounded monotone (min,+)-convolution
Histogram indexing [Chan and Lewenstein, 2015]
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Monotone k-SUM
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Monotone k-SUM

Bounded Monotone 3SUM

Monotone Set

A set A ⊂ Zd is monotone if it can be sorted as monotone increasing in
each coordinate.

Example (in two dimensions)
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Monotone k-SUM

Bounded Monotone 3SUM

Given monotone sets A,B, S ⊂ [n]d ,
Are a ∈ A, b ∈ B, s ∈ S such that a + b = s?

Example (in two dimensions)
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Monotone k-SUM

Bounded Monotone 3SUM

First studied in [Chan and Lewenstein, 2015]

Chan and Lewenstein gave a remarkable Õ(n2− 2
d+13 ) algorithm using

additive combinatorics techniques.

Can we further improve the algorithm for monotone 3SUM? Or is
there a matching lower bound?

Our Result:
Chan and Lewenstein’s algorithm is essentially optimal!
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Monotone k-SUM

Our Result on Bounded Monotone 3SUM

Theorem (this work)

Under the standard 3SUM conjecture, bounded d-dimensional monotone

3SUM requires time Ω(n2− 4
d
−o(1)).

Theorem (this work)

Under the strong 3SUM conjecture, bounded d-dimensional monotone

3SUM requires time Ω(n2− 2
d
−o(1)).

Very close to Chan and Lewenstein’s Õ(n2− 2
d+13 ) algorithm!
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Standard vs Strong 3SUM Conjecture
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Standard vs Strong 3SUM Conjecture

Standard vs Strong 3SUM Conjecture

Standard 3SUM Conjecture

Integer 3SUM requires time Ω(n2−o(1)).

Strong 3SUM Conjecture

3SUM on n integers in {−n2, · · · , n2} requires time Ω(n2−o(1)).

Are they equivalent?

Note: 3SUM on n integers can be reduced to the bounded domain of
{−n3, · · · , n3} via randomized reduction.
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Standard vs Strong 3SUM Conjecture

Standard vs Strong 3SUM Conjecture

3SUM+

Report all “hits” a3 ∈ A3 such that a1 + a2 + a3 = 0 for some
a1 ∈ A1, a2 ∈ A2.

Partial result towards showing equivalence:

Theorem (this work)

Under the standard 3SUM conjecture, 3SUM+ in the domain of
{−n2+δ, · · · , n2+δ} requires time Ω(n2−o(1)) for any δ > 0.
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Multidimensional k-SUM
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Multidimensional k-SUM

Multidimensional k-SUM in Fd
p

Instead of Z, take Fd
p as the underlying abelian group.

Is multidimensional k-SUM equivalent to integer k-SUM?

This is not obvious if one tries the straight-forward translation
between Z and Fd

p , due to carries in integer addition.

The meet-in-the-middle algorithm still runs in Õ(ndk/2e).

Is there a matching Ω(ndk/2e − o(1)) lower bound?
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Multidimensional k-SUM

Results on Multidimensional k-SUM

Known lower bounds for multidimensional k-SUM under ETH:

min(nΩ(k), 2Ω(d)) lower bound. [Bhattacharyya et al., 2011]

There is no no(k) algorithm for k-SUM for all k.
[Pătraşcu and Williams, 2010]

Theorem (this work)

Under the k-SUM conjecture, for sufficiently large p, k-SUM in Fd
p

requires:

Ω(nk/2−o(1)) for even k. Matching!

Ω(ndk/2e−2k log k
log p
−o(1)) for odd k. ???
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Proof Outline

Proof Outline for Bounded Monotone 3SUM Result

Integer 3SUM

Convolution-3SUM

Multiple Instances of
Convolution-3SUM

Multiple Instances
of Monotone 3SUM
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Proof Outline

Integer 3SUM → Convolution-3SUM

Convolution-3SUM

Given an array A[1 · · · n], determine whether there exist i 6= j such that
A[i ] + A[j ] = A[i + j ].

[Pătraşcu, 2010] If 3SUM requires Ω(n2−o(1)) time, then so does
Convolution 3SUM.

[Amir et al., 2014] Convolution-3SUM can be reduced to the domain
{−n2, · · · , n2} via randomized reduction.
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Proof Outline

Convolution-3SUM → Multiple Instances

Lemma

For any given dimension d, Convolution-3SUM in [m] can be reduced to
4d instances of Convolution-3SUM in [m1/d ]d .

Proof idea:

View [m1/d ]d as base-(m1/d) integer representation.
There are 4d different situations of carries in integer addition.
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Proof Outline

Convolution-3SUM → Monotone 3SUM

Lemma

Convolution-3SUM in [m]d can be reduced to Convolution-3SUM on
monotone sets in [nm]d .

Proof idea:

Convolution-3SUM can be seen as 3SUM in [n]× [m].
Map [n]× [m]d → [n]× [nm]d by

(b, a1, · · · , ad) 7→ (b,mb + a1, · · · ,mb + ad)
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Proof Outline

Putting it Together

Lemma

If monotone 3SUM in [n]d can be solved in time O(n2−2c/d−δ), then
Convolution-3SUM in [nc ] can be solved in time O(n2−δ/2).

Take c = 2 for standard 3SUM conjecture.

Take c = 1 for strong 3SUM conjecture.
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Open Problems

Open Problems

Is there a faster multidimensional k-SUM algorithm for odd k?
Or a tighter lower bound?

In particular, is there a O(n2− c
log p ) algorithm for 3SUM in Fd

p?

Is there a lower bound for 3XOR under the 3SUM conjecture?

Even an O(n1.99) algorithm or an O(n1.01) lower bound would be
significant.
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